Technology Landscape

ARTIFICIAL INTELLIGENCE

- **NEURAL NETWORKS**
- **PATTERN RECOGNITION**
- **NATURAL LANGUAGE PROCESSING**
- **CHATBOTS**
- **REAL TIME EMOTION ANALYTICS**
- **VIRTUAL COMPANIONS**
- **REAL TIME UNIVERSAL TRANSLATION**
- **THOUGHT CONTROLLED GAMING**
- **NEXT GEN CLOUD ROBOTICS**
- **AUTONOMOUS SURGICAL ROBOTICS**
- **ROBOTIC PERSONAL ASSISTANTS**
- **COGNITIVE CYBER SECURITY**
- **NEUROMORPHIC COMPUTING**
- **AUTONOMOUS SYSTEMS**
- **MACHINE LEARNING**
- **DEEP LEARNING**

Technology Readiness
- NOW
- 1-2 YEARS
- 2-4 YEARS
- >4 YEARS

Important technology for NZ business to be exploring

Sources:
- Frost & Sullivan “Artificial Intelligence - R&D and Applications Road Map” (Dec 2016)
- Harvard Business Review - The competitive landscape for Machine Intelligence (Nov 2016)
- Shivon Zilis and James Chan “The State of Machine Intelligence, 2016” (2016)
- Stanford University: “Artificial Intelligence and Life in 2030” (2016)
Artificial Intelligence is computer systems that exhibit human-like intelligence. It is a group of science fields and technologies concerned with creating machines that take intelligent actions based on inputs.

MACHINE LEARNING
Algorithms that can learn from and make predictions on data. Overlaps with Computational Statistics. Overlaps with Bayesian Statistics. Underpins Predictive Analytics. Underpins Data Mining.

Three subgroups:
• Supervised learning: the system is presented with example inputs and known desired outputs and learns how to map inputs to outputs
• Unsupervised learning: the system finds patterns without requiring example inputs and outputs
• Reinforcement learning: the system is "rewarded" when it gets something right and learns as a result.

EXAMPLES:
- Recommender systems (like NZ's own MOVIX which recommends movies)
- Xero uses Machine Learning for automated processes (like automated cost-coding)
- WEKA at the University of Waikato
- Jv between Goat Ventures and Winter Ellison for legal AI

PATTERN RECOGNITION
A branch of Machine Learning and Deep Learning which focuses on recognition of patterns in data.

EXAMPLES:
- DeepFace, Facebook

THOUGHT CONTROLLED GAMING
The application of AI, wearable technology, and brain computing interface technology to enable seamless interaction with social gaming environments in real-time, through avatars without the need for joystick type devices.

EXAMPLES:
- Emotiv, Games Research Lab (Columbia Uni)

REAL TIME EMOTION ANALYTICS
The application of AI to analyse brain signals, voice and facial expression to detect human emotions.

EXAMPLES:
- Emotiv

REAL TIME UNIVERSAL TRANSLATION
The application of Natural Language Processing to enable two humans (with no common language) to understand each other in real-time.

EXAMPLES:
- Microsoft Translator

COGNITIVE CYBER SECURITY
Cloud-based AI systems trained on historical cyber threat data, capable of mitigating real-time cyber threats.

EXAMPLES:
- Deep Instinct

ROBOTIC PERSONAL ASSISTANTS
Cloud based AI learns from Big Data to enable human-like social robots that can perform usefully as personal assistants.

EXAMPLES:
- Kuka Robotics

VIRTUAL COMPANIONS
Cloud connected, Virtual Reality based avatars powered by AI engines that can behave and interact just as a human would.

EXAMPLES:
- Digital companions that provide caregiving companionship for the elderly.

NEURAL NETWORKS
Computing systems that organise the computing elements in a layered way that is loosely modelled on the human brain. Enables Deep Learning.

EXAMPLES:
- The computing system that sits behind Baby X at Auckland Uni
- NZ's Professor Kasabov at AUT (Neucube)

AUTONOMOUS SURGICAL ROBOTICS
Future generation computing hardware that mimics the function of the brain in silicon chips.

EXAMPLES:
- The Human Brain Project
- IBM's TrueNorth processor chip
- NZ's Professor Simon Brown at University of Canterbury

CHATBOTS
A software robot that interacts with humans online, receiving and sending conversational text with the aim of simulating the way a human communicates. An example of Natural Language Processing.

EXAMPLES:
- Kiwi start-up Jude ai (an AI based financial advisor)
- Kiwi company Wine Searcher

NEURAL NETWORKS
Computing systems that organise the computing elements in a layered way that is loosely modelled on the human brain. Enables Deep Learning.

EXAMPLES:
- The computing system that sits behind Baby X at Auckland Uni
- NZ's Professor Kasabov at AUT (Neucube)

VIRTUAl COMPANIONS
Cloud connected, Virtual Reality based avatars powered by AI engines that can behave and interact just as a human would.

EXAMPLES:
- Digital companions that provide caregiving companionship for the elderly.

NEURAL NETWORKS
Computing systems that organise the computing elements in a layered way that is loosely modelled on the human brain. Enables Deep Learning.

EXAMPLES:
- The computing system that sits behind Baby X at Auckland Uni
- NZ's Professor Kasabov at AUT (Neucube)

AUTONOMOUS SURGICAL ROBOTICS
Future generation computing hardware that mimics the function of the brain in silicon chips.

EXAMPLES:
- The Human Brain Project
- IBM's TrueNorth processor chip
- NZ's Professor Simon Brown at University of Canterbury

Sources:
- Frost & Sullivan "Artificial Intelligence - R&D and Applications Road Map" (Nov 2016)
- "The competitive landscape for Machine Intelligence" (Dec 2016)
- "The State of Machine Intelligence, 2016" (2016)
- "Artificial Intelligence and Life in 2030" (2016)
- "The State of Machine Intelligence, 2016" (2016)
- "Artificial Intelligence and Life in 2030" (2016)